dplyr, tidyr, ggplot2, and tidyverse.Titanic.dim() function.head() function.colnames() function.sum(is.na(Titanic)).colSums(is.na(Titanic)).na.omit(Titanic).str(Titanic).summary(Titanic).features.as.factor().set.seed(123).sample().lm().predict(), and we classify predictions based on a threshold of 0.5.
glm() with a binomial family and a maximum of 100 iterations.predict(), and we classify predictions based on a threshold of 0.5.summary().




ggplot2.
Posted Jun 9, 2023
This project aimed to compare the performance and stability of three models applied to the Titanic dataset: Linear, Logistic Regression, and K-means clustering.
0
43

Codesoft