numpy for numerical operations, pandas for data manipulation, matplotlib.pyplot for data visualization, seaborn for enhanced data visualization, and modules from scikit-learn for machine learning.iris_data.X by dropping the 'Species' column from iris_data.y containing the 'Species' column.train_test_split() from sci-kit-learn to split X and y into X_train, X_test, y_train, and y_test.random_state) is set for reproducibility.SVC().fit().confusion_matrix() sci-kit-learn.sns.heatmap() to create the heatmap with annotations.
RandomForestClassifier().fit().confusion_matrix() from scikit-learn.sns.heatmap() to create the heatmap with annotations.
y_score_svm) for the test data using decision_function().roc_curve() and auc().
y_score_rf) for the test data using predict_proba().
Posted Aug 26, 2023
Analyzing Iris dataset with SVM and Random Forest models. Assessing performance with confusion matrices and ROC curves.
0
113

Codesoft