## Neccessary Imports
import os
import json
import random
import streamlit as st
import google.oauth2.credentials
from google.cloud import aiplatform
from google.oauth2 import service_account
## set environment variable to your credentials
os.environ("GOOGLE_APPLICATION_CREDENTIALS") = './credentials.json'
## set ids
project_id = 654321
endpoint_id = 123456
## Vertex AI Initialization
endpoint = aiplatform.Endpoint(
endpoint_name=f"projects/{project_id}/locations/us-central1/endpoints/{endpoint_id}"
)
# ... proceed with endpoint operations ...
## Random Number Generator; to handle 'ClientID'
def generate_random_numbers(length):
# Generate the random numbers
random_numbers = ''.join(random.choice('0123456789') for _ in range(length))
return random_numbers
## Build Streamlit App
def app():
# Streamlit app title and expander for defining or updating the knowledge base
st.title("TEST AutoML deployement")
## Inputs
loan = st.slider("LOAN", 0, 100, key='1001')
age = st.slider("AGE", 0, 100, key='1002')
Income = st.slider("INCOME", 0, 100, key='1003')
# Check if all fields have been filled
if loan and age and Income:
if st.button("Get Answer"):
# Generate Client ID
ClientID = generate_random_numbers(11)
st.error(f'Your ID: {ClientID}')
# Create a dictionary
data = {
"loan": str(loan),
"age": str(age),
"income": str(Income),
"ClientID": str(ClientID)
}
# Now 'data' is a dictionary that holds your data
st.json(data)
### Uncomment this and replace with your endpoint id from the Endpoints page
#ENDPOINT_ID = endpoint_id
PROJECT_ID = os.getenv("BUILD_SPECIFIC_GCLOUD_PROJECT")
instance_dict = data
response = endpoint.predict([instance_dict])
# print('API response: ', response)
st.success(f'API response: {response}')
else:
st.write("Please fill all the fields.")
# Run the Streamlit app
if __name__ == "__main__":
app()