Child Mortality Trend

Ayotomiwa Alao

Data Visualizer
Data Analyst
Data Cleaning and Transformation
Microsoft Excel
Microsoft Power BI
Microsoft SQL Server

Child_Mortality_Trend(Ages 0-5, 2010-2019): Continent, Country and 10 Causes of Death

Table Of Contents

Objectives

Trend Analysis
The trends in the causes of death over the year range.
Top Causes of Death
The distribution of deaths by cause and identify the top causes of death.
Geographical Analysis
The geographical distribution of deaths by cause and identify any continental pattern.
Year Variation
The yearly variations in the number of deaths for each cause and highlight any trends.

Data source

The data used in this project, titled 'Child_Mortality_Trend(Ages 0-5, 2010-2019): Continent, Country and 10 Causes of Death' is sourced from kaggle (an Excel extract). see here to find it. This dataset exclusively comprises information regarding the causes of death among children under 5 years old , detailing the number of deaths recorded per cause, per continent, per contry and per year over consecutive years(1990 to 2019).

Stages

Design
Development
Testing
Analysis

Design

Dashboard components required

Total number of death per cause
Total number of death per cause per continent
Total number of death per cause per country
Total number of death
A Slicer to select the preferred year
With these on the dashboard all question can be answered.

Tools

Tool Purpose Excel Exploring the data SQL Server Cleaning, testing, and analyzing the data Power BI Visualizing the data via intractive dashboards

Development

Pseudocode

General approach in creating this solution from start to finish
Explore the data in Excel
Load the data into SQL Sever
Clean the data with SQL
Test the data with SQL
Visualize the data in power BI
Generate the findings based on the insights

Data exploration

Observations

There are only 13 columns that contain the data we need for this analysis.
On country column, there is 'World' which is not needed because is not a country.
The year needed for this analysis is 2010 to 2019 but the dataset is having 1990 to 2019.
Renaming country column to desire name, from 'Entity' to 'country' and on the country column there is 'Micronesia(country)' instead of 'Micronesia'.
On the code column, there are '0' values.
For one of the objectives to be achieved, a continent column is needed and countries will be assign to thier respective continent.

Data cleaning

To refine the dataset to ensure it is structured and ready for analysis.

Selecting the necessary columns

--Selecting the necessary columns. --Out of the 29 causes of death in this dataset I'll be selecting 10 causes of death to analyse. SELECT Entity, code, Year, Malaria, Measles, Tuberculosis, Neoplasms, Meningitis, HIV_AIDS, Syphilis, Diarrheal_diseases, Nutritional_deficiencies, Whooping_cough FROM causes_of_death_in_children_under_5

Selecting the year range

--selecting the year range needed for the analysis (2010 to 2019). --Removing 'world' from the country column because it's not a country name. SELECT Entity, code, Year, Malaria, Measles, Tuberculosis, Neoplasms, Meningitis, HIV_AIDS, Syphilis, Diarrheal_diseases, Nutritional_deficiencies, Whooping_cough FROM causes_of_death_in_children_under_5 WHERE Year >= '2010' AND Year <= '2019' --Selecting the year range to be analyzed AND Entity <> 'World' --Removing 'world' from the country column ORDER BY Year

Renaming column to desire name

--Renaming column to desire name. --The column to be rename is the 'Entity' to 'Country'. SELECT Entity AS Country, --Renaming column (Entity) to desire name(Country) code, Year, Malaria, Measles, Tuberculosis, Neoplasms, Meningitis, HIV_AIDS, Syphilis, Diarrheal_diseases, Nutritional_deficiencies, Whooping_cough FROM causes_of_death_in_children_under_5 WHERE Year >= '2010' AND Year <= '2019' AND Entity <> 'World'

Renaming a country name from 'Micronesia(country)' to 'Micronesia'

--Renaming a country name from 'Micronesia(country)' to 'Micronesia'. UPDATE causes_of_death_in_children_under_5 SET Entity = 'Micronesia' WHERE Entity like 'Micronesia(country)';

Removing '0' value the from the 'code' column

--Removing '0' value the from the 'code' column. SELECT Entity AS Country, code, Year, Malaria, Measles, Tuberculosis, Neoplasms, Meningitis, HIV_AIDS, Syphilis, Diarrheal_diseases, Nutritional_deficiencies, Whooping_cough FROM causes_of_death_in_children_under_5 WHERE Year >= '2010' AND Year <= '2019' AND Entity <> 'World' AND code <> '0' --To remove '0' value in code column

Transform the data

Creating the 'continent' column

--Creating the 'continent' column. ALTER TABLE causes_of_death_in_children_under_5 ADD continent VARCHAR(100); UPDATE causes_of_death_in_children_under_5 SET continent = CASE -- Africa WHEN Entity IN ( 'Algeria', 'Angola', 'Benin', 'Botswana', 'Burkina Faso', 'Burundi', 'Cape Verde', 'Central African Republic', 'Chad', 'Comoros', 'Congo', 'Djibouti', 'Egypt', 'Equatorial Guinea', 'Eritrea', 'Eswatini', 'Ethiopia', 'Gabon', 'Gambia', 'Ghana', 'Guinea', 'Guinea-Bissau', 'Ivory Coast', 'Kenya', 'Lesotho', 'Liberia', 'Libya', 'Madagascar', 'Malawi', 'Mali', 'Mauritania', 'Mauritius', 'Morocco', 'Mozambique', 'Namibia', 'Niger', 'Nigeria', 'Rwanda', 'Sao Tome and Principe', 'Senegal', 'Seychelles', 'Sierra Leone', 'Somalia', 'South Africa', 'South Sudan', 'Sudan', 'Tanzania', 'Togo', 'Tunisia', 'Uganda', 'Zambia', 'Zimbabwe', 'Cameroon', 'Cote d''lvoire', 'Democratic Republic of Congo' ) THEN 'Africa' -- Asia WHEN Entity IN ( 'Afghanistan', 'Armenia', 'Azerbaijan', 'Bahrain', 'Bangladesh', 'Bhutan', 'Brunei', 'Cambodia', 'China', 'Cyprus', 'Georgia', 'India', 'Indonesia', 'Iran', 'Iraq', 'Israel', 'Japan', 'Jordan', 'Kazakhstan', 'Kuwait', 'Kyrgyzstan', 'Laos', 'Lebanon', 'Malaysia', 'Maldives', 'Mongolia', 'Myanmar', 'Nepal', 'North Korea', 'Oman', 'Pakistan', 'Palestine', 'Philippines', 'Qatar', 'Saudi Arabia', 'Singapore', 'South Korea', 'Sri Lanka', 'Syria', 'Taiwan', 'Tajikistan', 'Thailand', 'Timor-Leste', 'Turkey', 'Turkmenistan', 'United Arab Emirates', 'Uzbekistan', 'Vietnam', 'Yemen', 'East Timor' ) THEN 'Asia' -- Europe WHEN Entity IN ( 'Albania', 'Andorra', 'Austria', 'Belarus', 'Belgium', 'Bosnia and Herzegovina', 'Bulgaria', 'Croatia', 'Czech Republic', 'Denmark', 'Estonia', 'Finland', 'France', 'Germany', 'Greece', 'Hungary', 'Iceland', 'Ireland', 'Italy', 'Kosovo', 'Latvia', 'Liechtenstein', 'Lithuania', 'Luxembourg', 'Malta', 'Moldova', 'Monaco', 'Montenegro', 'Netherlands', 'North Macedonia', 'Norway', 'Poland', 'Portugal', 'Romania', 'Russia', 'San Marino', 'Serbia', 'Slovakia', 'Slovenia', 'Spain', 'Sweden', 'Switzerland', 'Ukraine', 'United Kingdom', 'Vatican City' ) THEN 'Europe' -- North America WHEN Entity IN ( 'Antigua and Barbuda', 'Bahamas', 'Barbados', 'Belize', 'Canada', 'Costa Rica', 'Cuba', 'Dominica', 'Dominican Republic', 'El Salvador', 'Grenada', 'Guatemala', 'Haiti', 'Honduras', 'Jamaica', 'Mexico', 'Nicaragua', 'Panama', 'Saint Kitts and Nevis', 'Saint Lucia', 'Saint Vincent and the Grenadines', 'Trinidad and Tobago', 'United States', 'Bermuda', 'Czechia', 'Greenland', 'Puerto Rico', 'United States Virgin Islands' ) THEN 'North America' -- South America WHEN Entity IN ( 'Argentina', 'Bolivia', 'Brazil', 'Chile', 'Colombia', 'Ecuador', 'Guyana', 'Paraguay', 'Peru', 'Suriname', 'Uruguay', 'Venezuela' ) THEN 'South America' -- Oceania WHEN Entity IN ( 'Australia', 'Fiji', 'Kiribati', 'Marshall Islands', 'Micronesia', 'Nauru', 'New Zealand', 'Palau', 'Papua New Guinea', 'Samoa', 'Solomon Islands', 'Tonga', 'Tuvalu', 'Vanuatu', 'Cook Islands', 'American Samoa', 'Guam', 'Tokelau' ) THEN 'Oceania' -- Default: Unknown or Other ELSE 'Others' END;

Create the SQL view

CREATE VIEW view_causes_of_death_in_children_under_5 as SELECT Entity AS Country, continent, --the continent that's just created code, Year, Malaria, Measles, Tuberculosis, Neoplasms, Meningitis, HIV_AIDS, Syphilis, Diarrheal_diseases, Nutritional_deficiencies, Whooping_cough FROM causes_of_death_in_children_under_5 WHERE Year >= '2010' AND Year <= '2019' AND Entity <> 'World' AND code <> '0'

Testing

Here are the data quality tests conducted:

Data Quality Test

After creating the SQL view, the data will be tested to check if they are in the right datatype.
The columns should be 14.(Verified)
The Year must be 2010 t0 2019.(Verified)
The Country, code, continent column must be string format, and other columns must be numerical.(Verified)
Each records must be unique in the dataset (Duplicate Count Check).(Verified)

Column count check

--Column count check SELECT COUNT (*) AS column_count FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = 'view_causes_of_death_in_children_under_5'

Year range check

--The Year range check SELECT MIN(Year) AS min_year, MAX(Year) AS max_year FROM view_causes_of_death_in_children_under_5;

Data Type Check

--Data Type Check --The Country, code, continent column must be string format, and other columns must be numerical. SELECT COLUMN_NAME, DATA_TYPE FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = 'view_causes_of_death_in_children_under_5' --The continent column datatype is 'varchar', which is very much okay.

Duplicate Count Check

--Duplicate Count Check(10 years is to be analysed so the Country count should not be more than 10) SELECT Country, COUNT(*) as duplicate_count FROM view_causes_of_death_in_children_under_5 GROUP BY country HAVING COUNT(*) > 10;

Visualization

Results

Child.Mortality.Trend-.Power.BI.Dashboard.Gif.mp4

Dax Measure

Total Number of death

Total Number of death = SUMX(view_causes_of_death_in_children_under_5, view_causes_of_death_in_children_under_5[Diarrheal_diseases] + view_causes_of_death_in_children_under_5[HIV_AIDS] + view_causes_of_death_in_children_under_5[Malaria] + view_causes_of_death_in_children_under_5[Measles] + view_causes_of_death_in_children_under_5[Meningitis] + view_causes_of_death_in_children_under_5[Neoplasms] + view_causes_of_death_in_children_under_5[Nutritional_deficiencies] + view_causes_of_death_in_children_under_5[Syphilis] + view_causes_of_death_in_children_under_5[Tuberculosis] + view_causes_of_death_in_children_under_5[Whooping_cough])

Analysis

Findings

Total Number of death is 19.27Millions.
2010 is the Year with the highest death rate of 2.46Millions.
The Total number of death per year decreases as the year increase, this shows that the continents gets better in terms of medical care for kids under 5 years old.
Africa has the highest number of death over the year range, which makes it the continent with the poorest medical care for kids under 5 years old from this analysis.
Nigeria has the highest number of death over the year range, which makes it the country with the poorest medical care for kids under 5 years old from this analysis.
For the causes of death, Diarrheal diseases has the highest death count over the year range, which shows that WHO, and the healthcare bodies of each continent and Country needs to take the diarrheal diseases treatment and prevention more seriously and other causes of death.

Conclusion

Thank you for taking the time to explore this project! I'm thrilled to share the achievements and outcomes that I've accomplished.
Moving forward, I'm excited about the potential for future enhancements and improvements to futher benefit my clients.
If you have any questions, inquiries, or feedback, please don't hesitate to reach out to me at Contact me.
Once again,thank you for your interest in my project. I am open to data analyst roles.Refer me
Best regards,
Partner With Ayotomiwa
View Services

More Projects by Ayotomiwa