##Computing Variables of the Study as a New Pivot Table
library(tidyverse)
library(haven)
df <- readRDS("data/transformd.rds")
##Anxiety
df <- df |>
mutate(anxiety = round ((Q10 + Q13 + Q14 + Q15 + Q18 + Q19 + Q20)/7, 2),
.after = Q20)
##Avoidance
##1st Step: Reversing Questions 11, 8, 16, 17
df <- df |>
mutate(Q11New = 6 - Q11, .after = Q11) |>
mutate(Q8New = 6 - Q8, .after = Q8) |>
mutate(Q16New = 6 - Q16, .after = Q16) |>
mutate(Q17New = 6 - Q17, .after = Q17)
##2nd Step: Computing Avoidance from Revised Questions
df <- df |>
mutate(avoidance = round((Q9 + Q12 + Q8New + Q11New + Q16New + Q17New)/6, 2),
.after = Q17New)
##Interpersonal Deviance
##1st Step: Revised Q21
df <- df |>
mutate(Q21New = 6 - Q21, .after = Q21)
##2nd Step: Interpersonal Deviance Variable
df <- df |>
mutate(intpersdev = round((rowSums(across(Q21New:Q27)))/7, 2), .after = Q27)
##Organizational Deviance
df <- df |>
mutate(orgdev = round((rowSums(across(Q28:Q39)))/12, 2), .after = Q39)
##ACE
##1st Step: Reversing Q40-Q44 and Setting Missing Values(NA) for DK/DA values
df <- df |>
mutate(Q40New = case_when(Q40 == 1 ~ 2, Q40 == 2 ~1, Q40 == 3~0,
Q40 == 4~0), .after = Q40)
df <- df |>
mutate(Q41New = case_when(Q41 == 1 ~ 2, Q41 == 2 ~1, Q41 == 3~0,
Q41 == 4~0), .after = Q41)
df <- df |>
mutate(Q42New = case_when(Q42 == 1 ~ 2, Q42 == 2 ~1, Q42 == 3~0,
Q42 == 4~0), .after = Q42)
df <- df |>
mutate(Q43New = case_when(Q43 == 1 ~ 2, Q43 == 2 ~1, Q43 == 3~0,
Q43 == 4~0), .after = Q43)
df <- df |>
mutate(Q44New = case_when(Q44 == 1 ~ 2, Q44 == 2 ~1, Q44 == 3~0,
Q44 == 4~0), .after = Q44)
#2nd Step: Q45-Q50 Missing Values (NA) for DK/DA
df <- df |>
mutate(Q45New = case_when(Q45 == 1 ~ 1, Q45 == 2 ~2, Q45 == 3~3,
Q45 == 4~0, Q45 == 5~0), .after = Q45)
df <- df |>
mutate(Q46New = case_when(Q46 == 1 ~ 1, Q46 == 2 ~2, Q46 == 3~3,
Q46 == 4~0, Q46 == 5~0), .after = Q46)
df <- df |>
mutate(Q47New = case_when(Q47 == 1 ~ 1, Q47 == 2 ~2, Q47 == 3~3,
Q47 == 4~0, Q47 == 5~0), .after = Q47)
df <- df |>
mutate(Q48New = case_when(Q48 == 1 ~ 1, Q48 == 2 ~2, Q48 == 3~3,
Q48 == 4~0, Q48 == 5~0), .after = Q48)
df <- df |>
mutate(Q50New = case_when(Q50 == 1 ~ 1, Q50 == 2 ~2, Q50 == 3~3,
Q50 == 4~0, Q50 == 5~0), .after = Q50)
#3rd Step: Compute ACE from New Revised Questions
df <- df |>
mutate(ace = round((Q40New + Q41New + Q42New + Q43New + Q44New + Q45New
+Q46New + Q47New + Q48New + Q50New), 2), .after = Q50New)
##Phubbing
df <- df |>
mutate(phubbing = round((Q51 + Q52)/2, 2), .after = Q52)
#Employee Engagement
df <- df |>
mutate(empengage = round((rowSums(across(Q60:Q100)))/41, 2), .after = Q100)
#Self-Attachment
##1st Step: Reversing Questions 102, 103, 104, 106, 107, 111
df <- df |>
mutate(Q102New = 6 - Q102, .after = Q102) |>
mutate(Q103New = 6 - Q103, .after = Q103) |>
mutate(Q104New = 6 - Q104, .after = Q104) |>
mutate(Q106New = 6 - Q106, .after = Q106) |>
mutate(Q107New = 6 - Q107, .after = Q107) |>
mutate(Q111New = 6 - Q111, .after = Q111)
##2nd Step: Computing Self-Attachment
df <- df |>
mutate(selfattach = (Q101 + Q102New + Q103New + Q104New + Q105 + Q106New +
Q107New + Q109 + Q111New + Q112)/10, .after = Q112)
#Remote
df <- df |>
mutate(remote = round((Q118 + Q119 + Q120)/3, 2), .after = Q120)
#Focus
df <- df |>
mutate(focus = (Q134 + Q135),
.after = Q135)
#Save File in CSV
write_csv(df, "data/variables.csv")