from sklearn.metrics import roc_curve, roc_auc_scoreimport matplotlib.pyplot as pltmodels = [forest, gnb, gbc, knn, log_reg, svc]labels = ['Random Forest', 'Gaussian NB', 'Gradient Boosting', 'KNN', 'Logistic Regression', 'SVC']plt.figure(figsize=(10, 6))for model, label in zip(models, labels): X_eval = X_test if model in [forest, gnb, gbc] else X_test_scaled y_pred_prob = model.predict_proba(X_eval)[:, 1] fpr, tpr, _ = roc_curve(y_test, y_pred_prob) auc = roc_auc_score(y_test, y_pred_prob) plt.plot(fpr, tpr, label=f'{label} (AUC = {auc:.3f})')plt.plot([0, 1], [0, 1], 'k--')plt.xlabel('False Positive Rate')plt.ylabel('True Positive Rate')plt.title('ROC Curves: Heart Disease Prediction')plt.legend()plt.grid(True, linestyle='--', alpha=0.7)plt.show()