In this project, we first aim to evaluate the applicability of regressors Random Forest (RF), Gradient Booting (GB), and Decision Tree (DT), K Nearest Neighbor (kNN), and XGBoost architectures to predict daily lake evaporation of five reservoirs in the Awash River basin, Ethiopia. The best performing models, Gradient Boosting and XGBoost, are then explained through an explanatory framework using daily climate datasets. Description of the modeling framework :