The above narrative suggests that ability to retrieve knowledge about experiments and historical models in an adhoc manner is critical in data science. It is. It is also grossly underserved. Knowledge management tools for domain specific models exist, knowledge management tools for dev-ops and ML-Ops exist, but tools for analytics and model development are siloed. Information gets fragmented over time. So analysts and data scientists often have to go to experiment tools, data catalogs or ML-Ops tools to fetch information they need to develop a model. In a subsequent iteration of this model, the contextual information that informed the development of this model is often lost, and the development team, possibly with new team members, have the task of reconstructing this contextual information again. This library is a step in fixing this problem. The central idea is to organize tasks in terms of a sequence of steps that are pretty standard in data analysis work and capture knowledge in context while these tasks are performed.