def display_image_with_annotations(image, annotations, show_borders=True):
"""
Display an image with annotations overlaid.
Parameters:
image (numpy array): The image to display.
annotations : mask.
show_borders (bool): If True, borders around each annotation will be drawn.
Returns:
None
"""
def display_annotations(annotations, show_borders=True):
"""
Helper function to display annotations on an image.
Parameters:
annotations: masks
show_borders (bool): If True, borders around each annotation will be drawn.
Returns:
None
"""
# Return immediately if there are no annotations to display
if len(annotations) == 0:
return
# Sort annotations by area in descending order
sorted_annotations = sorted(annotations, key=lambda x: x['area'], reverse=True)
# Get the current axis for plotting
axis = plt.gca()
axis.set_autoscale_on(False)
# Create an empty image with an alpha channel (RGBA) to hold the annotations
overlay_img = np.ones((sorted_annotations[0]['segmentation'].shape[0],
sorted_annotations[0]['segmentation'].shape[1], 4))
overlay_img[:,:,3] = 0 # Set alpha channel to 0 (transparent)
# Iterate through each annotation and overlay it on the image
for annotation in sorted_annotations:
mask = annotation['segmentation'] # Get the segmentation mask
# Generate a random color for the mask with 50% opacity
mask_color = np.concatenate([np.random.random(3), [0.5]])
overlay_img[mask] = mask_color # Apply the mask color to the overlay image
# If borders are enabled, draw borders around each mask
if show_borders:
# Find contours of the mask
contours, _ = cv2.findContours(mask.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# Smooth the contours slightly
contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
# Draw the contours with a specified color and thickness
cv2.drawContours(overlay_img, contours, -1, (0, 0, 1, 0.4), thickness=1)
# Display the annotated image
axis.imshow(overlay_img)
# Set up the plot with a large figure size to ensure detailed visualization.
plt.figure(figsize=(20, 20))
# Display the image that you want to annotate.
plt.imshow(image)
# Call the helper function to display annotations on the image.
display_annotations(annotations, show_borders)
# Remove the axis labels and ticks for a cleaner display.
plt.axis('off')
# Render and display the final image with the annotations.
plt.show()