Redes probabilísticas são modelos muito versáteis, com aplicabilidade crescente em diversas áreas. Esses modelos são capazes de estruturar e mensurar a interação entre variáveis, permitindo que sejam realizados vários tipos de análises, desde diagnósticos de causas para algum fenômeno até previsões sobre algum evento, além de permitirem a construção de modelos de tomadas de decisões automatizadas. Neste trabalho são apresentadas as etapas para a construção dessas redes e alguns métodos usados para tal, dando maior ênfase para as chamadas redes bayesianas, uma subclasse de modelos de redes probabilísticas. A modelagem de uma rede bayesiana pode ser dividida em três etapas: seleção de variáveis, construção da estrutura da rede e estimação de probabilidades. A etapa de seleção de variáveis é usualmente feita com base nos conhecimentos subjetivos sobre o assunto estudado. A construção da estrutura pode ser realizada manualmente, levando em conta relações de causalidade entre as variáveis selecionadas, ou semi-automaticamente, através do uso de algoritmos. A última etapa, de estimação de probabilidades, pode ser feita seguindo duas abordagens principais: uma frequentista, em que os parâmetros são considerados fixos, e outra bayesiana, na qual os parâmetros são tratados como variáveis aleatórias. Além da teoria contida no trabalho, mostrando as relações entre a teoria de grafos e a construção probabilística das redes, também são apresentadas algumas aplicações desses modelos, dando destaque a problemas nas áreas de marketing e finanças.