tf.constant and tf.Variable.tf.concat.tf.zeros and tf.ones.tf.transpose.tf.cast.tf.multiply and tf.matmul.tf.linalg.det.tf.eye.tf.reshape.cifar10.load_data().TextVectorization layer from TensorFlow Keras.Normalization layer from TensorFlow Keras.ImageDataGenerator and tf.image functions to augment an image.files.upload() from google.colab.tf.keras.preprocessing.image.RandomFlip from tf.keras.preprocessing.image.RandomRotation from tf.keras.preprocessing.image.flip_up_down from tf.image.rgb_to_grayscale from tf.image.adjust_saturation from tf.image.adjust_brightness from `tf.imageImageDataGenerator for Augmentation:keras_preprocessing.ImageDataGenerator from keras.preprocessing.image.ImageDataGenerator with various augmentation settings.flow from datagen with a specified batch size.load_iris from sklearn.datasets.x and target labels y.tf.keras.layers.Dense.model.fit.load_iris from sklearn.datasets.x and target labels y.sklearn.linear_model.Perceptron.model.fit.tf.keras.datasets.mnist.load_data.tf.keras.models.Sequential and tf.keras.layers.Dense.keras.datasets.mnist.load_data.keras.layers.Convolution2D, keras.layers.MaxPooling2D, and keras.layers.Dense.model.fit.Posted Jul 1, 2023
Contribute to arjunprakash027/Deep-Learning-With-Tensorflow development by creating an account on GitHub.
0
9