To analyze customer purchasing behavior to identify trends and insights that can help a retail company improve its marketing and sales strategies.
#### **Steps:**
### 1. **Data Collection:**
- **Dataset**: A CSV file containing transactional data with columns such as `Customer ID`, `Product ID`, `Purchase Date`, `Purchase Amount`, and `Product Category`.
- You can use publicly available datasets from platforms like Kaggle or simulate data.
```python
import pandas as pd
# Load dataset
df = pd.read_csv("customer_data.csv")
```
### 2. **Data Cleaning:**
- Handle missing values, duplicates, and outliers.
```python
# Check for missing values
df.isnull().sum()
# Drop duplicates
df.drop_duplicates(inplace=True)
# Fill missing values (example for Purchase Amount)