Mean Reversion Trading Strategy Bot Development

Jose

Jose Acosta

Mean Reversion Trading Strategy šŸ“ˆ

A sophisticated implementation of a mean-reversion trading bot using real market data and the Ornstein-Uhlenbeck process for optimal entry/exit points.

🌐 Try it Online

No installation required! You can run this project directly in your browser:
šŸ“Š Interactive Demo: Click the Binder badge above to launch a full Python environment
šŸš€ Quick Start: Use the Colab badge for a guided notebook experience
⚔ Live Demo: View sample results (GitHub Pages)

šŸš€ Features

Advanced OU Parameter Estimation
Maximum Likelihood estimation
Robust statistical analysis
Adaptive parameter updates
Smart Signal Generation
Buy/Sell signals based on mean deviations
Statistical confidence thresholds
Dynamic position sizing
Comprehensive Backtesting
Portfolio performance tracking
Risk metrics calculation
Transaction cost modeling
Rich Visualizations
Price and signal plots
Performance analytics
Real-time monitoring

šŸ—ļø Project Structure

mean_reversion/
ā”œā”€ā”€ core/
│ ā”œā”€ā”€ estimator.py # OU parameter estimation
│ ā”œā”€ā”€ strategy.py # Trading signal generation
│ ā”œā”€ā”€ backtester.py # Backtesting engine
│ └── visualizer.py # Plotting and analytics
ā”œā”€ā”€ main.py # Main execution script
ā”œā”€ā”€ mean_reversion_demo.ipynb # Interactive notebook
ā”œā”€ā”€ requirements.txt # Project dependencies
ā”œā”€ā”€ runtime.txt # Python version for Binder
└── README.md # Documentation

šŸ”§ Installation

Option 1: Run Online (Recommended for quick testing)

Click the Binder badge above
Wait for the environment to load (~2-3 minutes)
Open mean_reversion_demo.ipynb
Run all cells!

Option 2: Local Installation

Clone the repository:
git clone https://github.com/josetraderx/mean_reversion_OU.git
cd mean_reversion_OU
Install requirements:
pip install -r requirements.txt

šŸ“Š Usage

Interactive Notebook (Online)

The mean_reversion_demo.ipynb provides a step-by-step walkthrough with:
Real data fetching
Parameter estimation visualization
Live backtesting results
Interactive plots

Command Line (Local)

Run the main script:
python main.py
The script will prompt you for:
Stock ticker symbol (e.g., AAPL)
Start date (YYYY-MM-DD)
End date (YYYY-MM-DD)

šŸ“ˆ Example Output

===== Mean Reversion Strategy Backtest Summary =====
Symbol: AAPL
Date Range: 2020-01-01 to 2023-01-01
Total Trading Days: 756
Initial Capital: 10000
Final Portfolio Value: 11230.45
Total Return: 12.30%

Estimated Parameters:
mu: 150.10 # Mean level
theta: 0.18 # Mean reversion speed
sigma: 4.32 # Volatility

šŸ“‹ Requirements

Python 3.8+
Core Libraries:
pandas
numpy
scipy
matplotlib
yfinance
jupyter (for notebooks)
All dependencies are listed in requirements.txt

āš ļø Disclaimer

This project is for educational and research purposes only
Past performance does not guarantee future results
Trade at your own risk
Always validate strategies with paper trading first

šŸ“œ License

This project is licensed under the MIT License - see the LICENSE file for details.

šŸ¤ Contributing

Contributions are welcome! Please feel free to submit a Pull Request.

šŸ“§ Contact

For questions and feedback, please open an issue or reach out through GitHub.
Like this project

Posted Oct 7, 2025

Developed a mean-reversion trading bot using the Ornstein-Uhlenbeck process.