Enterprise Security Platform Development

Shaid Tiwari

πŸ›‘οΈ Enterprise Security Platform

Production-grade threat detection platform processing 10,000+ logs/second with ML-powered analysis

Demo Video Of Dashboard.

🎯 What This Is

An enterprise-grade security operations platform that detects threats in real-time using machine learning and rule-based analysis. Built with microservices architecture for scalability and production deployment.
Use Cases:
Security Operations Center (SOC) monitoring
Threat intelligence and incident response
Compliance monitoring (PCI-DSS, SOC2)
Cloud security event analysis

✨ Key Features

πŸ€– ML-Powered Detection - IsolationForest + RandomForest models (92% accuracy)
⚑ High Performance - Processes 10,000+ logs/second with <150ms latency
πŸ“Š Real-Time Dashboard - Live threat monitoring with Streamlit
πŸ”Œ Multiple Ingestion Sources - HTTP, Syslog, Kafka, File watching, Packet capture
πŸ“ˆ Full Observability - Prometheus metrics, Grafana dashboards
🐳 Production Ready - Docker Compose, health checks, auto-scaling

🎬 Quick Demo

Live Threat Detection

# Submit a SQL injection attempt
curl -X POST "https://api.your-demo.com/api/v1/threats/analyze" \
-H "Authorization: Bearer $TOKEN" \
-d '{"log_data": "SELECT * FROM users WHERE id=1 OR 1=1--", "source_ip": "10.0.0.1"}'

# Response (92.5 risk score - CRITICAL)
{
"threat_id": "abc123",
"risk_score": 92.5,
"threat_type": "SQL_INJECTION",
"severity": "CRITICAL",
"confidence": 0.94
}

πŸ—οΈ Architecture

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”    β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Ingestion │───→│ Redis Queue │───→│ Detection β”‚
β”‚ Service β”‚ β”‚ (10K/sec) β”‚ β”‚ Engine β”‚
β”‚ β”‚ β”‚ β”‚ β”‚ (ML + Rules)β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
↓ Multiple ↓
Sources: β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β€’ HTTP API β”‚ PostgreSQL β”‚
β€’ Syslog β”‚ (Storage) β”‚
β€’ Kafka β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
β€’ File Watch ↓
β€’ PCAP β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ Dashboard β”‚
β”‚ (Streamlit) β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Tech Stack

Backend: FastAPI, Python 3.11+
ML: scikit-learn (IsolationForest, RandomForest)
Queue: Redis (batching, caching)
Database: PostgreSQL (threat storage)
Monitoring: Prometheus, Grafana
Ingestion: Scapy, Kafka, Syslog
Frontend: Streamlit with Plotly

πŸš€ Quick Start

Prerequisites

Python 3.11+
Docker & Docker Compose
Redis
PostgreSQL

1. Clone & Setup

git clone https://github.com/Shaid-T/Enterprise-Security-Platform.git
cd Enterprise-Security-Platform

# Create virtual environment
python3.11 -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

2. Start Services

# Start infrastructure
docker-compose up -d redis postgres

# Initialize database
psql -h localhost -U threat_user -d security_platform -f init-db.sql

# Start API Gateway
uvicorn services.fastapi_app:app --reload --port 8000 &

# Start Detection Service
python services/detection_service.py &

# Start Ingestion Service
uvicorn services.ingestion_service:app --reload --port 9000 &

# Start Dashboard
npm run dev


## πŸ“Š Performance Benchmarks

| Metric | Result | Target |
|--------|--------|--------|
| **Throughput** | 750 req/sec | 500+ |
| **Detection Latency (p95)** | 145ms | <200ms |
| **Ingestion Rate** | 10,000 logs/sec | 5,000+ |
| **ML Accuracy** | 92.3% | >90% |
| **Queue Processing** | 1,200 jobs/sec | 1,000+ |

*Tested on: 4 vCPU, 8GB RAM*

---

## 🎯 Detection Capabilities

### Threat Types Detected
- **SQL Injection** - Pattern matching + ML anomaly detection
- **Cross-Site Scripting (XSS)** - Script tag and event handler detection
- **Command Injection** - Shell command pattern analysis
- **Path Traversal** - Directory traversal attempt detection
- **Brute Force** - Failed login pattern recognition
- **Malware Signatures** - Code execution pattern matching
- **LDAP Injection** - LDAP query manipulation detection

### Detection Rules
- 8 built-in rules with configurable severity
- Custom rule support via API
- ML-based anomaly detection for zero-day threats
- Confidence scoring (0-1 scale)

---

## πŸ“ˆ Real-World Usage

### Example: SOC Monitoring
```python
# Ingest 10,000 logs from various sources
POST /ingest/http # HTTP API
UDP 5140 # Syslog
/logs/*.log # File watcher
kafka://logs # Kafka consumer

# Detection Engine processes in parallel
# Critical threats trigger immediate alerts
# Dashboard shows real-time statistics

Example: Incident Response

# Query historical threats
GET /api/v1/threats/?severity=CRITICAL&hours=24

# Export for forensics
GET /api/v1/threats/export?format=csv

# Block attacking IPs
POST /api/v1/blocks {"ip": "10.0.0.50"}

πŸ”§ Configuration

Environment Variables

# Redis
REDIS_URL=redis://localhost:6379
REDIS_MAX_CONNECTIONS=100

# Database
DATABASE_URL=postgresql://user:pass@localhost:5432/security_platform

# Detection
ALERT_THRESHOLD=70.0
ML_WEIGHT_ISOLATION=0.5
ML_WEIGHT_RANDOM_FOREST=0.5

# Ingestion
BATCH_SIZE=100
BATCH_TIMEOUT_MS=500

Scaling

# Scale detection workers
docker-compose up -d --scale detection-service=5

# Adjust queue batch size
BATCH_SIZE=200 # Process 200 logs per batch

πŸ§ͺ Testing

Run Tests

# Unit tests
pytest tests/ -v --cov

# Load testing (Apache Bench)
ab -n 1000 -c 50 \
-H "Authorization: Bearer $TOKEN" \
-p payload.json \
http://localhost:8000/api/v1/threats/analyze

# Integration tests
pytest tests/integration/ -v

Generate Test Data

# Submit 1000 test threats
python scripts/generate_test_threats.py --count 1000

πŸ“š Documentation

API Documentation - Interactive API docs
Architecture Guide - System design details
Deployment Guide - Production deployment
ML Models - Model training and evaluation

🚒 Deployment

Docker Compose (Recommended)

docker-compose up -d

Kubernetes

kubectl apply -f k8s/
Like this project

Posted Nov 7, 2025

platform that detects threats in real-time using machine learning and rule-based analysis. Built with microservices architecture for production deployment.

DrDroid Observability Stack Implementation
DrDroid Observability Stack Implementation
AI-Powered Finance Automation & Executive Dashboard🏦 πŸ“Š
AI Content Factory - Automation Platform That Scales Agencie...
NEBULA: Creative Workflow Platform with Motion-Driven UI

Join 50k+ companies and 1M+ independents

Contra Logo

Β© 2025 Contra.Work Inc